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LIQUID CRYSTALS, 1995, VOL. 18, No. 2, 219-230 

Computer simulation of dynamics and morphology of discotic 
mesophases in extensional flows 

by ARVINDER P. SINGH and ALEJANDRO D. REY* 
Department of Chemical Engineering, McGill University, Montreal, 

Quebec, H3A 2A7, Canada 

(Received 22 February 1994: accepted 5 March 1994) 

A previously presented model is used to simulate the dynamics and microstructure of spatially 
invariant uniaxial discotic nematic liquid crystals in isothermal, incompressible, irrotational, 
extensional (shear-free or clongational) flows. Numerical and analytical solutions of the 
director n and alignment S are presented for given uniaxial extensional, equi-biaxial extensional 
and planar extensional start-up flows. The unit sphere description of the director is used to 
discuss and analyse the sensitivity of the director trajectories and the alignment relaxation to 
the initial conditions (no, So), to the alignment Deborah number (De), and to the type of flow. 
The numerical results are used to characterize the relaxation of the tensor order parameter Q 
and to compute the steady flow birefringence. The various flows are classified according to their 
orienting strength and alignment strength, and according to whether they generate geodesic 
(shortest path) director orbits. Equi-biaxial extensional and planar extensional flows are found 
to be strongly orienting and strongly aligning flows, while uniaxial extensional flow is a weakly 
orienting and weakly aligning flow. The number of strain units required to achieve steady state 
are shown to depend on whether the flow is geodesic (uniaxial extensional and equi-biaxial 
extensional flows) or not (planar extensional flow). 

1. Introduction 
Carbonaceous mesophases are an important class of 

naturally occurring discotic nematic liquid crystals [ 1-31. 
These mesophases are formed by condensation of aro- 
matic rings and tend to adopt a uniaxial discotic nematic 
phase (N, [4, 51, with the unit normals to the disc-like 
molecules more or less aligned along a common direction 
(see figure 2(b)), represented by the director n; in this 
paper we use n and orientation interchangeably. Carbo- 
naceous mesophases can be spun into stiff and strong 
(high performance) fibres [2, 3, 61, and understanding 
their flow behaviour is of practical utility. 

Many industrial materials processing methods, such as 
the moulding of polymers, are designed with the objec- 
tives that the alignment and orientation introduced dur- 
ing the deformation and forming stages are controlled 
[7]. The process choices are based on these two indepen- 
dent qualities of the flow, its orienting and aligning 
strength, which also form the basis for polymer flow 
classifications [8]. Although such classification has not 
been developed for discotic mesophase fluids, it certainly 
can provide useful guidelines on the dependence of 
orientation and alignment on flow type. In this respect 
extensional flows, such as spinning flows, seem to be the 
most relevant to processing discotic mesophase fluids. 

*Author for correspondence. 

Previous work [9- 131 on the flow properties of uniaxial 
discotic nematics assumed that the scalar order par- 
ameter S (alignment) remains unaffected by the flow, and 
were based on the Leslie-Ericksen (L-E) theory [14,15] 
for uniaxial nematics. The important differences in sign 
and magnitude of the material parameters corresponding 
to uniaxial rod-like and discotic nematics follow from 
the fact that rod-like nematics orient their longest mole- 
cular dimension along the director while disc-like nema- 
tics orient their shortest molecular dimension along the 
director. As is well known, the orienting properties of 
uniaxial nematics during shear flow are governed by the 
sign and magnitude of the tumbling (reactive) parameter 
A: for aligning (non-aligning) rods A> 1 (0 < A <  l), and 
for aligning (non-aligning) discs A < - 1 (- 1 < A < 0); the 
tumbling parameter A is given by the negative ratio of the 
irrotational torque coefficient ( y J  and the rotational 
viscosities ( y  J, and represents the coefficient of the ratio 
of strain to vorticity torques acting on the director n. 
Previous work [lo, 113 focused on the orienting proper- 
ties of aligning uniaxial discotic nematics in steady shear, 
and it was found that shear orients the director in the 
shear plane and at  a steady angle 8, lying in the 
90" I8 I 135" sector with respect to the flow direction. In 
steady uniaxial extensional flows, the orienting behav- 
iour of uniaxial nematics is again determined by the sign 
of A: when A>O the director aligns along the stretching 
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220 A. P. Singh and A. D. Rey 

(extension) direction, and when i < O  the director aligns 
somewhere in the compression plane, orthogonal to the 
stretching direction [ 131. 

For materials of larger molecular weights the coupling 
between lhe director and the scalar order parameter 
should be retained [16]. This coupling introduces addi- 
tional nonlinearities through the dependence of the 
generalized Leslie coefficients on the scalar order par- 
ameter, as shown in various works [16-211. In a previous 
work [22], the authors developed from variational prin- 
ciples a model that takes into account variable alignment 
in discotic nematics, and applied i t  to uniaxial extensio- 
nal flow. Jt was found that the director trajectories on the 
unit sphere (n . n = 1) follow a geodesic flow from the 
initial orientation to the compressional plane, and that 
the alignment relaxation was sensitive to the initial 
orientation, to the extension rate, and to the nematic 
potential that controls the magnitude of S in the absence 
of flow. The sensitivity to initial conditions, typical of 
geodesic flows, was shown to be the cause for the loss of 
predictability that occurs when the initial orientation lies 
along the extension axis of the flow. 

Our main objective in this work is to establish the 
relevant qualitative features that describe the relations 
between extensional deformation inputs and orientation 
and alignment responses, in a model discotic nematic 
liquid crystal, and to use these results to formulate a 
practical flow classification of various extensional flows. 
In the present paper the phenomenological parameters of 
the particular model discotic nematic liquid crystal cho- 
sen for study are not fitted to those of any existing real 
material, and their choice is based on previous results 
[22]. The particular objectives of this paper are: 

To characterize the sensitivity of the director 
paths to the compressional axis or compressional 
plane. to the initial conditions, to the extension 
rate, and to the flow type, by using numerical 
simulation; 
To characterize the alignment relaxation along 
the director paths, to the initial conditions, to the 
extension rate, and to the flow type by using 
numerical simulation; 
To determine the geometry of the director trajec- 
tories to the compression axis or compressional 
plane, and to classify various extensional flows as 
geodesic or non-geodesic flows; 
To provide a general classification for extensional 
flows according to the magnitude of their align- 
ment strength and orientation strength. 

and classify the numerical solutions. A brief description 
of the numerical method used to integrate the governing 
equations is presented. In $3  we present, discuss, and 
classify the solution vector, consisting of the time depen- 
dent director and alignment fields, obtained from 
numerical integration and analytical solutions of the 
governing equations. Typical computations of the tensor 
order parameter relaxation and steady flow birefringence 
are presented. Overall classifications according to trajec- 
tory geometry of the director on the unit sphere, align- 
ment strength, and orientation strength are given. 

2. Governing equations 
2.1. Definitions of coordinates, kinematics, orientation 

and alignment 
In this paper we study the temporal and spatiall 

invariant microstructural response of a model uniaxial 
discotic nematic, subjected at time t=O,  to a range of 
extensional flows of constant extension rate C. In this 
paper the adopted fluid flow terminology is that of Bird 
ef nl. [23]. Due to their prevalence in applications here we 
emphasize the three representative extensional flows: 
uniaxial extensional flow, equi-biaxial extensional flow, 
and planar extensional flow, but whenever possible allow 
for further generalizations by introducing representative 
parameters, as given in [23]. In the rest of this paper equi- 
biaxial extensional flow is referred to as biaxial extensio- 
nal flow. Figure 1 shows the deformation of a cube of 
discotic nematic liquid crystal subjected at time t = 0 to: 
(a )  uniaxial extensional flow (UE), (h) biaxial extensional 
flow (BE), and ( c )  planar extensional flow (PE). We note 
that the word uniaxial in uniaxial extensional flow and 
biaxial in biaxial extensional flow refer to the number of 
extension (stretching or pulling) directions; these irrota- 
tional flows are three dimensional. Equi-biaxial extensio- 
nal flow is kinematically the inverse of uniaxial 
extensional flow. On the other hand, planar cxtensional 
flows, also known as pure shear [24.25] or strip biaxial 
flows, are irrotational two-dimensional flows, where the 
deformation characterized by an extension direction and 
an orthogonal contraction director occurs on a plane. In 
planar extensional flow the stream lines are a family of 
rectangular hyperbola whose centre is a stagnation (sad- 
dle) point [25]. 

An experimental set-up to generate a uniaxial exten- 
sional flow is to pull a cylindrical sample from two 
opposite ends at a rate that increases exponentially with 
time; in figure 1 the sketch representing uniaxial exten- 
sion (UE), using rectangular coordinates, shows the 
extension direction along the x axis whilc the contraction 

The organization of this paper is as follows. In 9 2 we 
define the coordinate system and the state variables, 
present the governing equations, and briefly present the 
elements of the unit sphere description used to discuss 

directions are along they and z axes. A way to generate a 
biaxial extensional flow is to stretch a thin sheet of 
material in two orthogonal directions simultaneously at 
an equal rate, with a corresponding decrease in the sheet 
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t "  

Figure I .  Deformation of (a) unit cube of material at time t > 0 submitted to (b) uniaxial extension flow (UE), (c)  biaxial extensional 
flow (BE), and planar extensional flow (PE). The velocity components for these flows are given in equation (10). In uniaxial 
extension (UE) flow, the x axis is the extension direction and the y and z axes are the directions of compression; this flow is an 
irrotational 3D flow. In biaxial extensional (BE) flow the y and z axes are the extension directions and the x axis is the 
compression direction; this three-dimcnsional irrotational flow is kinematically the inverse of uniaxial extension. In planar 
extension, the extension direction is along the x axis, the contraction direction is along they axis, while no motion occurs along 
the z axis; planar extensional flow is a two-dimensional (planar) irrotational flow. 

thickness. An approximation to this flow is found in 
lubrication squeeze-film flow and during the inflation of 
a balloon; in figure 1 the sketch representing biaxial 
extension (BE), using rectangular coordinates, shows the 
two extension directions along the y and z axes while the 
contraction direction is along the x axis. Planar extensio- 
nal flow is equivalent to stretching a flat thin sheet of 
fluid in one direction, with a corresponding contraction 
in an orthogonal direction, but with no motion in the 
third direction; in figure 1 the sketch representing planar 
extension (PE), using rectangular coordinates, shows the 
extension direction along the x axis, the contraction 
direction along the y axis, while along the z axis no 
motion occurs. An experimental generation of an ap- 
proximate planar extensional flow is the four-roll mill 
flow, where four long cylinders of equal radii, placed 
along the four corners of a square are set to rotate with 
equal magnitude but with directions opposite to the two 
nearest neighbours. The resulting essentially two- 
dimensional irrotational flow generates a family of rec- 
tangular hyperbolic stream lines, with a stagnation point 
at the centre of the square. 

The microstructure of the model nematic considered 
here is characterized by the uniaxial tensor order par- 
ameter Qi i( t )  [ 151 

where the following restrictions apply: 

Q..=Q..* 1J J I  3 Q..=O; 11 - 1 / 2 I S I  1; nini= 1 (1 h) 

and hij  is the unit tensor. The magnitude of the scalar 
order parameter S is a measure of the molecular align- 
ment along the director n, and its magnitude is given by 
S = 3(niQijnj)/2. Equation (1 a)  gives a proper description 
of the macroscopic order in a discotic nematic phase if 
we identify the director as the average orientation of the 
unit normals to the molecular discs; see figure 2(b); as 
explained in [26], with this identification, S is positive for 
both rod-like and disc-like uniaxial nematic liquid crys- 
tals, and no further distinction is required in this paper 
since rods are not considered here. Since extensional 
flows will not induce negative values of the scalar order 
parameter S we further restrict its variation to the 
positive unit interval, 0 5 S I 1 [26]. 

To enforce the unit length constraint n .  n = 1 and to 
visualizc the director orbits on the unit sphere, we 
parametrize the director with 

n = (nx, n,,, n,) = (cos 4, sin 4 cos 8, sin 4 sin 8), (2) 

where 0 (0 I 8  I 2 n )  is the azimuthal angle and 4 (0 I 4  
I n) is the polar angle, see figure 2 (a). The north pole of 
the sphere is located at 4 = 0, the south pole at 4 = n, and 
the equator at (e,$) = ([0,2n], f n/2). 

In the unit sphere description [27-291 the director tip, 
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222 A. P. Singh and A. D. Rey 

in the presence of flow, defines a trajectory O(n,) on the 
surface of the sphere 

O(n,)=(nER2; n=n(t ,  no) r € P + ) ,  ( 3 )  

where n,=n ( r=0),  Q2 denotes the surface of the unit 
sphere and P' the positive reals. To characterize some of 
the director orbits O(n,) of interest we need to define 
some unique trajectories such as geodesics and meri- 
dians. A geodesic G is the shortest arc connecting two 
points on the sphere, and is given by [30] 

sin # sin 6, 
sin ( N 2 )  cos $-(cos N , )  sin # cos d-- -~ J ( I / N ? -  i j = O  

(4) 

where N ,  and N ,  are constants that depend on two 
points belonging to G; the geodesic or great circle, is the 
intersection of the sphere with the plane containing the 
given points and the centre of the sphere. When the two 
points are the poles ( N ,  = n) the degenerate geodesics are 
the meridians M, which in terms of (8, #) and the director 
components (n,, i=x, y ,  z) ,  are given by [30] 

tanO=l/Lil; d?=I/(N;'-I); O<+<n ( 5 a , b ,  c) 

and 

n,=d,n,; 1 In , ,<  1; -1  I n , <  1, (6% b, 4 
where d, ( -  x <d, < m )  is a constant whose numerical 
value defines a particular meridian; a family of meri- 
dians, is shown. by the full lines, in figure 2(a) .  

To characterize the initial relaxation of the alignment 
as the director traverses the surface of the sphere, we 
divide the sphere into different characteristic regions, as 
shown in figure 5, by the R +  and R -  regions. In 

irrotational extensional flows, the only Bow effect on the 
orientation and alignment is due to the symmetric part of 
the velocity gradient tensor (u i j ) ,  known as the rate of 
strain tensor and here denoted by A, and whose ijth and 
jith components are given by A ij = A ji = (tii., + u j ,  i) /2.  An 
important observation, used below to classify the 
numerical results of alignment relaxation, is that a direc- 
tor whose tip lies in the R - regions, samples extensional 
strains (A:nn>0), while a director whose tip lies in the 
R + regions, samples compressional strains (A:nn < 0). 

2.2. Governing orientation and alignment equations 
The macroscopic model used in this paper has been 

described in detail in [22]. Here we just present the 
governing equations for the temporal evolution of the 
director field n(t)  and the alignment S( t ) ,  and refer the 
reader to the above mentioned paper for details. The 
governing equations for our model uniaxial discotic 
nematics, subjected to a given isothermal now, are 

where the components of the vorticity tensor W are w, = (u , , ,  - uJ, J / 2 .  %(S)  is the tumbling function, /3,(S) the 
ordering function, and /3,(S, U )  is proportional to the 
thermodynamic driving force; these functions are b' w e n  
by 

t "  

- - L Z  

(4 
Figure 2. Definition of (a )  coordinate system, and (h )  director 

orientation of a uniaxial discotic nematic liquid crystal. (a)  
Director angles and unit sphere: 0 ( O g 0 2 2 n )  is the 
azimuthal angle and 4 (0 < 4 I n) is the polar angle. The 
north pole of the sphere is located at 4 =0 ,  the south pole 
at 4=n,  and the equator at  (0,+)=([0,2n], kn /2 ) ,  n 
denotes the director. (b) The director in a discotic nematic 
phase is the average orientation of the unit normals to the 
disc-like molecules. 

/31 = -(go: + 60%S)/(6 + 47;s) (8 h) 
and 

p 2  (- 3S+ U S +  U S z  -2US3) / (3  + 27:S), (8 C )  

where the starred coefficients are scaled with the align- 
ment relaxation time T~ that appears in equation (7 6). 

To select numerical values for the three phenomenolo- 
gical parameters 02, o,*, z:, we enforce the following 
constraints on the signs of A and y1 (9-121 and on the 
values of 1. when S = 0 and S = 1 [9] 

(9 a, 6, C ,  d)  

The adopted values that satisfy the constraints are: 
at = 1/10, O: = 1-7, 7; = - 1.0, and the resulting A and p1 
are shown in figure 3; thc relevant phenomena described 
in this paper are captured by other arbitrary triplets that 
satisfy equations (9). and the values adopted here were 
chosen only for convenience. It is worth noting that for 
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0.0 0.5 1 .o 
Scalar Order Parameter, S 

Figure 3. Tumbling function A and the ordering function 8 ,  
as a function of the scalar order parameter S. The tum- 
bling function is the ratio of the coefficient for strain and 
vorticity torques, while the ordering function is the coeffi- 
cient for the ambient strain rate Ann that governs the 
relaxation of S .  For discotics (rod-like) nematics both are 
negative (positive). 

extensional flows all steady states are simple fixed points 
and thus adoption of the different A(S) and fil(S) will 
only change the time scales but the significant pheno- 
mena will be essentially unchanged. 

The simplifying assumptions and approximations 
made in deriving the mathematical model that describes 
the flow-induced alignment and orientation of an ideal 
discotic nematic liquid crystal, as given by equations (7) 
and (S), can be found in [22] .  

The velocity field v(x, y,z) corresponding to the exten- 
sional start-up flow of the nematic sample, is given by 
~ 3 1  

7 i 
u,=aixH(t);  u,= -a,(l+b)yH(t); 

where B is the given constant extension rate. The corres- 
ponding rate of deformation tensor A, is given as r a  0 O 1  

U 
2 (1-b)  J 

where a = + 1 or - 1, and 0 I b I 1 captures the range of 
possible extensional flows. Uniaxial extensional flow 
(UE) is given by a = + 1 ,  b = 0, biaxial extensional flow 
(BE) by a = - I ,  b = 0, and planar extensional flow (PE) 
by a =  + 1, b= + 1. These flows are irrotational and the 
vorticity tensor is zero (W = 0). Replacing equations (10) 

and ( 1  1) in equations (7), the following set of coupled 
non-linear ordinary differential equations for extensional 
isothermal, incompressible flows of uniaxial discotic 
nematic crystals are obtained: 

dn, u 
= 3 ;1[3(1- n,') + (n: - nf)]n,, 

dn, a 
dt. 2 
-- - - 2 [ 3 n ; + b ( l -  

dn, a 
_= -- 4 3 n z  - b( 1 + rz; - nZ2)]nz, d& 2 

and 

dS a 
- =- f i l [3 (n~-1 ) -b (n~-nf ) ]n ,+De-1~ ,  ( 1 2 d )  dE 2 

where E = i t  is the strain (dimensionless time), De = 87, is 
the alignment Deborah number (dimensionless strain 
rate). We note that equations (12) are dimensionless, and 
thus, for a given set of parameters, the solution vector ( S ,  
n) is only a function of the strain (dimensionless time) 
&=i t .  In the absence of Frank elasticity [15] ,  strain 
scaling is typical of liquid crystalline flow phenomena 
[31] .  When De+O the alignment ( S )  relaxation is elastic, 
when De+m it is purely viscous, and for the interme- 
diate values it is viscoelastic. At intermediate De the 
director relaxation is also viscoelastic, since it is coupled 
to S through A(S). 

The initial conditions used to solve equations (12) are 

(13)  @c = 0: n = no; S = Seq; no. no= 1 

where S,,(U) is the equilibrium scalar order parameter of 
the normal ( S > O )  uniaxial nematic phase, found by 
setting the numerator of equation (8 c )  equal to zero [32] 

s cq ='+'J( 4 4 1 2 ) .  

For U < 813 the stable phase is isotropic, for 813 I U I 3  
there is biphasic equilibrium. In this paper we use two 
representative nematic potentials U = 3 and U = 5, and 
the corresponding initial conditions are: S,, (U  = 3 )  = 0.5 
and S,, ( U  = 5) = 0.76. All angles are reported in degrees. 

Equations (12) arc integrated using an implicit 
corrector-predictor first order Euler integration method 
with an adaptable time step [33] .  Application of the 
implicit corrector-predictor method transforms the set of 
coupled nonlinear ordinary differential equations (12)  
into a set of coupled nonlinear algebraic equations. For 
each time step the algebraic equations are solved using 
the Newton-Raphson iteration scheme [33];  the predic- 
tor step generates a first guess for the iteration loop and 
the corrector step is the iteration loop itself. The adopted 
convergence criteria is that the length of the difference 
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224 A. P. Singh and A. D. Rcy 

vector between the calculated solution vectors corres- 
ponding to two successive iterations is less than lop6.  
The transient solution vector obtained from the numeri- 
cal solutions (n(E). S(E)), is used to calculate the tensor 
order parameter Q(E) ,  and the converged steady state 
solutions (n,,, SSs) are used to compute the steady flow 
birefringence. To facilitate the discussion and perform an 
analysis of the numerical solutions, some of the com- 
puted results are presented in reference to the unit sphere 
description of the director field. 

3. Analytical results 
3. I .  Director dynamics 

Integration of the set of equations (12) yields, with A 
given by equation (1 l), the following expression for the 
director relaxation n(E) for any extensional start-up flow 

J 
and in the component form 

and 
E, ,=O for i#j 

UE 

/-r--.. 

where n,, is the j th component of the initial director 
orientation (n (0)). Figure 4 shows representative com- 
puted director trajectories for uniaxial extension, biaxial 
extensional and planar extensional flows projected onto 
the J>-Z plane, here the x axis is normal to the plane of the 
paper, and the direction of the director paths are indi- 
cated by the direction of arrows. The figure shows that 
for uniaxial extensional and biaxial extensional flows the 
director follows identical paths but in reverse directions. 
In terms of the adopted polar (4) and azimuthal (0) 
angles, the director trajectorles, given by equations (1 6), 
are as follows 

Uniaxial extensional flow: 
tan (@= l/dl; 0 5 4  In; - cc <d,  < w ,  (17a) 

Biaxial extensional flow: 
tan (O)= l /d , ;  O g q I n ;  -cc)<d,<cx, (17b) 

Planar extensional flow: 
t a n ( d ) s i n ( d ) = l / d , c o t ( # J ) ; O r ~ < n ;  -co<d2<co. 

( 1 7 ~ )  

where d, = Izy/nz, and d, = n,n,/n: for time t 2 0. Compar- 
ing equations (9, (6) and (16) it follows that for uniaxial 
extensional and biaxial extensional flows. the director 
trajectories belong to the meridians of the unit sphere, 
and the director dynamics belong to the class of geodesic 
flows [22]. Equation (17c) and figure 4 show that planar 
extensional flow is not a geodesic flow, except when 
d2+ so (n, lying along the x-y plane or the JI-z plane); in 
practice due to the presence of the fluctuations this 
exceptional case will not occur. The director trajectories 
should exhibit the characteristic sensitive dependence on 
initial conditions which is typical of geodesic flows [34] or 
of arbitrary flows on a sphere with multiple fixed points. 

(1 6 a, b, c) 

( 1  6 d )  

(16e) 

( 1 6 f )  

(169) 

BE PE 

+ 
Y 

t 
Y 

a = + l  a = - 1  a = + l  
b =  0 b -  0 b =  I 

(4 (b) (c) 
Figure 4. Schematics of the director trajectories on the y-z plane for (a) uniaxial cxtcnsional flow (UE). (b) biaxial extensional flow 

(BE), and (c) planar extensional flow (PE). For uniaxial (biaxial) extensional flow the sources are the poles (equator) and thc sink 
is the equator (poles). For planar extensional Row the sources arc the poles and thc sinks are ny = 1. 
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Table 1. Steady states and sensitive initial conditions of the director. 

Strongest Director steady states Sensi tive 
compression dependence to 

Flow type direction nxss nyrs nzss initial conditions 

b=O y-z plane 0 nxo= f 1 a = + 1  

a=+1 O<h< 1 y axis 0 f l  0 nyo = 0 
a=-1  0 5 6 5 1  x axis + I  0 0 nxo = 0 

UE BE PE 

t "  t "  t "  

a=+1  
b =  0 

a=-1  
b =  0 

a=+1  
b =  1 

(a) (b) (4 
Figure 5. Sensitivity of the initial alignment S relaxation to the initial director orientation. The different characteristic regions for 

the ambient strain rate Ann for (a) uniaxial extensional flow (UE), (b)  biaxial extensional flow (BE), and (c) planar extensional 
flow (PE). In the R -  regions the alignment rate is positive (A:nn>O), and in the R +  regions the alignment rate is negative 
(A:nn < 0). 

The sensitive dependence on initial conditions for each 
extensional flow type are 

Uniaxial extensional flow: 

nxo= f 1, (18 a)  

nxo = 0 (18b) 

Biaxial extensional flow: 

Planar extensional flow: 
nyo = 0. 

When the initial director orientation for each flow type 
is along those defined in equations (18) predictability is 
lost; for example, in planar extensional flow, if nyo = 0 the 
director may evolve with equal likelihood towards the 
positive y axis or towards the negative y axis. Table 1 
summarizes the relations between flow types (a= i 1, 
0 S b l ) ,  the compression direction or compression 
plane, and the stable steady state director orientations. 
The entries in table 1 show that for all cases the director 
always aligns along the compression direction or the 
compression plane of the flow. It is worth noting that 
when a = - 1, the stable steady state director orientation 
is insensitive to the magnitude of b, since for these flows 
the strongest compression direction always lies along the 

x axis. On the other hand when a =  + 1, the strongest 
compression plane changes from the y-z plane when 
b = 0, to the y axis when b # O .  These observations can be 
used to classify the orienting strength of each extensional 
flow, since as shown above, the sensitive dependence to 
initial conditions for biaxial extensional and planar 
extensional flows leads to no uncertainty (since n = - n) 
while for uniaxial extensional flow the magnitude of 
largest uncertainty is the whole equator (n,=O). Thus, 
on a relative scale, biaxial extensional and planar exten- 
sional flows are strongly orienting flows while uniaxial 
extensional flow is a weakly orienting flow. 

Another important practical property of each flow is 
the presence or absence of geodesic flow, because this will 
determine the number of strain units required to achieve 
the steady director orientation; geodesic flows will, in 
general, require less strains because a geodesic path is the 
shortest. For example, figure 4 (c) shows that for planar 
extensional flows the paths are generally longer and thus 
the number of applied strains to achieve steady state 
must be larger than for the uniaxial extensional and 
biaxial extensional flows. 

3.2. Alignment dynamics 
The alignment relaxation S(E) depends on no through 

the ambient strain rate A:nn. Figure 5 shows different 
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1.1 , I 
Table 2. Alignment strength of extensional flows. 

- 
v) v) 

n 
E F! 

'3 

1 .o 
0.9 
0.8 

0.7 

0.6 

0.5 
0.0 0.2 0.4 0.6 0.8 1.0 

b 
Alignment strength (absolute _value of steady state 

dimensionless ambient strain rate) I (A:nn),,l as a function 
of the flow parameter b, for all types of extensional flows. 
The biaxial extensional and planar extensional flows are 
more strongly aligning than uniaxial extensional flow. 

Figure 6. 

representative regions for A:nn: in the R -  regions the 
ambient strain rate is positive (A:nn>O), and in the R +  
regions the ambient strain rate is negativc (A:nn <O). The 
initial alignment relaxation characteristics are given by 

no in R': (2) >o; 
& = O -  

no in2R-=dR+:  - (9) r = O '  =o. J 
It follows from equations (19) that for any De, a suffi- 
cient condition for increasing S is that n,, is in R'. For 
large De, discotic nematics, initially in R - ,  undergo a 
temporary melting while the director is in region R- [22]. 

In case of polymer flows [8] a flow type may be 
characterized as weakly aligning or strongly aligning 
depending on the degree of alignment change in the 
flowing units. In the present case, our model predicts that 
the alignment strength is directly proportional to 
l(.&:nn)ssl. Figure 6 shows the dimensionless steady state 
alignment strength 1 (&nn),,l for all the possible extensio- 
nal flows (a= f 1,0 I b I 1). The figure clearly shows 
that when a = - 1 the alignment strength is insensitive to 
the magnitude of b, but for a= + 1, it is highly sensitive 
to the value h. The figure also shows the location of the 
three representative extensional flows. Table 2 shows the 
relations between the flow aligning strength and the flow 
parameters a and b, for general extensional flows. Com- 
paring the various entries in table 2, it follows that the 
highest flow alignment strength scales with the strongest 
compressional strains (a = - 1,O I h I 1 ;  and a = 1, h = 1) 
as in biaxial extensional and planar extensional flows, 
while the lowest alignment strength scales with the 

Alignm_ent strength 
Flow type I (A:nn),,l 

1 
2 a=+1 h = O  

1 
2 ( 1  +b)  O<hSl a = + ]  

a= - 1  O < b < l  1 

weakest compressional strains (a= + 1, h=O) as in 
uniaxial extensional flow. 

4. Numerical results 
4.1. Orientational relaxation 

Figure 7 (a) ahows the director orientation relaxation, 
in terms of the azimuthal director angle 6 and the polar 
director angle 4 as a function of strain (dimensionless 
time) & = i t ,  for uniaxial extensional flow (solid line), 
biaxial extensional flow (dot-dash line), and planar 
extensional flow (triple dot-dash line), for De=0-5, 
U = 5,  and with the initial director orientation (6,,, 4,,) 
= 45,45). Figure 7 (b) shows the corresponding com- 
puted scientific visualization of the director relaxation, 
represented by the normals to the shown discs. Figure 
7 (a) shows that for uniaxial extensional flow the steady 
director orientation is (dSs.&) = (45,90), for biaxial 
extensional flow it  is (&, bSs) = (45, 0). and for planar 
extensional flow it is (O,,, &) = (0,90), in agreement with 
the predictions summarized in table 1 .  The visualization 
in figure 7 ( b )  shows that the director exhibits different 
combinations of twisting and tilting as the strain in- 
creases but that the final steady state orientation is 
always along the strongest compression direction(s) for 
each flow. I t  can be shown that for all extensional flows, 
the director relaxation is faster at higher De and at lower 
U ,  since for these conditions the adapted A(S)  samples 
larger absolute values. 

Figure 8 shows the x and z components of the director 
as a function of strain (dimensionless time) & = i t ,  for 
uniaxial extensional flow (solid line) and planar extensio- 
nal flow (dot dash line), for De = 0.5. U = 5, and with the 
initial director orientation (nxo = 0.9990, npo = 0.0004, 
nzo = 0.0447) or ( G o ,  4,,) = (89.4,2.56). The figure shows 
that the number of strain (dimensionless time) units 
required to achieve steady state director orientation for 
planar extensional flow is considerably larger than those 
for uniaxial extensional flow. For the selected no, the 
director follows, in both cases, a trajectory close to the s- 
I? plane till the equator is reached; this is the reason for 
the comparable n, dynamics in both thc cascq. Thc main 
difference in required strains arises from the fact that for 
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planar extensional flow only they axis is the compression 
direction, and thus n, must now decay to zero. 

4.2. Alignment viscoelastic relaxation 
Figure 9 shows the alignment relaxation S(E) for 

uniaxial extensional flow (solid line), biaxial extensional 
flow (dash-dot line), and planar extensional flow (triple 
dot-dash line) corresponding to the initial director orien- 
tation of figure 7, and for (a) U = 5 ,  De = 0.5, (b) U = 5, 
De=O.l,(c) U=3,De=0.5,and(d) U=3,De=O-l.The 

UE BE PE 

0 
0 
0 
0 
0 

Y O  

/ g  
(b) 

Figure 7. (a)  Aximuthal director angle 0 and polar director 
angle 4 as a function of strain (dimensionless time) E =i t ,  
for uniaxial extensional flow (solid line), biaxial extensio- 
nal flow (dot-dash line), and planar extensional flow 
(triple dot-dash line) for De=0-5, U =  5, and initial direc- 
tor orientation (O,,, 4,)=(45, 45). The figure shows the 
orientation relaxation of the director for three different 
types of extensional flows. (b) Corresponding computed 
scientific visualization of the director relaxation, repre- 
sented by the normals to the shown discs. For the same 
initial orientation, the steady state director orientation is 
different and the final steady state depends on the type of 
extensional flow. 

0.6 

0.4 

0.2 

0.8 

0 2 4 6 8  

Strain, E 

Figure 8. Director components as a function of strain (dimen- 
sionless time) E = i t ,  for uniaxial extensional flow (solid 
line) and planar extensional flow (dot-dash line) for 
De = 0.5, U = 5, and initial director orientation 
(nxo = 0.9990, nyo = 0.0004, nz0= 0.447) or (O0, $J = (89.4, 
2.56). The number of strains (dimensionless time) units 
required to achieve steady state orientation for planar 
extensional flow is considerably larger than for uniaxial 
extensional flow. 

1 .oo 

m 0.75 

.. . 
0.0 0.5 1.0 1.5 0.5 1.0 1.5 2.0 

Strain, E 

Figure 9. The alignment relaxation S ( & = i t )  for uniaxial 
extensional flow (solid line), biaxial extensional flow 
(dash-dot line), and planar extensional flow (triple dot- 
dash line) corresponding to the initial director orientation 
of figure 6, for (a) U = 5 ,  De=0.5; (b) U=5,  De=O.l; (c) 
U = 3 ,  De=0.5; and (d )  U = 3 ,  De=O.l. Here  it 
denotes strain or dimensionless time. The figure shows 
that the relaxation is more sensitive to the alignment 
strength of the flow at higher De (viscous mode) and at 
lower U (elastic mode). 
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relaxation coordinate E = C t  is the strain (dimensionless 
time). The figure shows that biaxial extensional and 
planar extensional flows have similar relaxations and 
both lead to higher steady state values of the alignment S 
than in case of uniaxial extensional flow, as predicted in 
table 2. The figure shows that at higher De, the dynamics 
of S are slower than at lower De, for both low and high 
values of U ,  and that this trend is independent of the 
flow type. In addition at higher De, the viscous mode 
dominates the viscoelastic relaxation at  all the times, and 
the effect of the relative magnitude of U is smaller. while 
at lower De, the elastic mode dominates and the effect of 
U is larger. It also follows from the figure that a t  higher 
Dc. the dynamics and steady state value of S is more 
sensitive to the value of I/ in the case of uniaxial 
extensional flow than in case of biaxial extensional and 
planar extensional flows, because at a given De, the flow 
alignment strength ( 1  (A:nn),,I) in the former is lower 
than in the last two cases. At lower De, the flow-type 
sensitivity is weaker since in this regime the elastic mode 
dominates. 

4.3. Tensor order parameter relaxation and flow 
birefringence 

Figure 10 shows the relaxation of the components of 
the tensor order parameter Q as a function of strain 
(dimensionless time) 8 = E r  with initial director orien- 
tation (Oo ,  $ o )  = (45.43, for C7 = 3 and De= 0.5, and for 
(u) uniaxial extensional flow (solid line), (h)  biaxial 
extensional flow (dash dot line), and (c) planar extensio- 
nal flow (triple dash-dot line). For the shown parameters 
the relaxation is virtually complete after 5 strain (dimen- 
sionless time) units. The trace elements of Q scale with 
the alignment strength of the flow and the relative 
orientation between nss and compression directions of A. 
A summary of the main features of the steady state 
valucs of trace of Q is as follows: 

The biaxial extensional flow exhibits the lowest 
value since n, is normal to the compression axis (x  
axis) while the planar extensional flow attains the 
highest magnitude since n,, is along the compression 
axis (y axis) and the alignment strength is high. 
Since ra, is normal to the extension direction for 
uniaxial extensional and planar extensional flows, 
thus Q,, is small, while for biaxial extensional flow, 
the net combination due to the fact that n, is along 
the compressional axis and that the high alignment 
strength gives a relative large Q,,. 
Here the compression directions for biaxial exten- 
sional and planar extensional flows are orthogonal 
to n, and thus for these flows Q Z Z  is small. For 
uniaxial extensional flow, although n, lies in the 

K 

6: 

0.6 

0.2 

-0.2 

Strain, E 

Figure 10. The relaxation of the components of the tensor 
order parameter Q ( & = i t )  with initial director orientation 
( O o .  4,)=(45, 45). for U = 3  and De=0.5, and for (a)  
uniaxial cxtensional flow (solid line), (bj  biaxial extensio- 
nal flow (dash-dot line), and (c)  planar extensional flow 
(triple dash-dot line). The relaxation coordinate c=Et is 
the strain or dimensionless time. The magnitude of the 
different components scale with the alignment strength of 
each flow, and with the relative orientations between the 
different elements of Q and the compression directions of 
each flow. 

compressional plane the weakly aligning character 
of the flow yields a relatively low Q,,. 

The steady state values of the off-diagonal components 
(Qi j ,  i # j )  are equally explained by taking into account 
the alignment strength of the flow and the cornpression 
directions of the flow. For example Qyz vanishes for 
biaxial extensional and planar extensional flows since n, 
is parallel to the compression direction of these flows, 
while for uniaxial extensional flow Qyz is relatively large 
since n,, and n, are both in the compression plane of the 
flow. 

According to [26], the birefringence Aq can be 
expressed by 

where ell and e, are the elements of the dielectric tensor 
e,, parallel and normal to the director, respectively, the 
tensor e,, is given by e,,= Fd,, + AemaxQ,,, where the first 
term is the average trace of e,, and Aemax is the anisotropy 
for S = 1 ; for discotics, Aq < 0 since Aemax < 0. In deriving 
equation (20) we have assumed that f?$ 2AemaxS/3 for the 
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Computer simulations 

values of S corresponding to the nematic phase. Equa- 
tion (20) shows that the steady flow-induced bi- 
refringence d ~ , ,  is proportional to the magnitude of the 
steady alignment Sss. 

Figure 11 shows the steady state alignment S,, as a 
function of De for uniaxial extensional flow (solid line), 
for biaxial extensional and planar extensional flows 
(dash-dot line) for (a) U = 5, and (b) U = 3. As shown in 
table 2, the alignment strength of biaxial extensional and 
planar extensional flows is identical and thus the shown 
curve for these two flows superpose. The figure shows a 
monotonic increase in the flow birefringence. At high De 
the viscous mode dominates and the effect of the magni- 
tude of U is smaller, while at low De the elastic mode 
dominates and the effect of the magnitude of U on Sss is 
larger irrespective of the flow type. The figure shows, in 
agreement with table 2 ,  that the birefringence for uniax- 
ial extensional flow is smaller than for other flow types 
since it is a weakly aligning flow. The alignment strength 
of each flow type explains the relative sensitivity of the 
birefringence to De for the various flows. At higher U the 
effect due to the different alignment strengths is smaller 
than at lower U .  At lower U ,  the viscous mode domi- 
nates and the effect due to the different degrees of 
alignment strengths increases rapidly with increasing De. 

4. Conclusions 
In this initial investigation of the nematorheology of 

uniaxial discotics in extensional flows, we have per- 

0.00 0.25 0.50 

De 
Figure 1 1 .  The steady state alignment S, as a function of De 

for uniaxial extensional flow (solid line), and for both 
biaxial extensional and planar extensional flows (dash-dot 
line), for (a) U = 5,  and (b)  U = 3. The flow birefringence is 
proportional to S,, and increases with De. The birefr- 
ingence for biaxial extensional and planar extension flows 
is identical and is greater than for uniaxial extensional 
flow for all U and De. 
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Table 3. Classification of extensional flows. 

Alignment 

strength (scalar order Geodesic 
Orientation strength 

Flow type (director) parameter) flow 
~ 

Uniaxial Extensional 

Biaxial extensional 

Planar extensional 

flow Weaker Weaker Yes 

flow Stronger Stronger Yes 

flow Stronger Stronger No 

formed a useful characterization of the sensitivity of the 
director, scalar order parameter, and tensor order par- 
ameter relaxation with respect to the flow type, the 
alignment Deborah number, and the initial director 
orientation. Use of the unit sphere description identified 
the director dynamics of uniaxial extensional and biaxial 
extensional flows as geodesic flows, and as non-geodesic 
(except for one special case) for planar extensional flow. 
The three flows exhibit sensitive dependence to initial 
conditions, but due to the double arrow nature of the 
director vector (n = - n,) biaxial extensional and planar 
extensional flows are strongly orienting flows since they 
have one stable fixed point. On the other hand, uniaxial 
extensional flow is a weakly orienting flow, since the 
stable steady states are a degenerate circle, and when no is 
on the poles of the unit sphere, predictability is lost. 
Significant differences between flow types arise in the 
number of strain units required to achieve steady state 
orientations, according to whether the flow is geodesic 
(uniaxial extensional or biaxial extensional flows) or 
non-geodesic (planar extensional flow). The alignment 
strength (I(knn),,l) of the flows scale with the magni- 
tude of the ambient strain rate (A:nn). It is found that 
uniaxial extensional flow is a weakly aligning flow but 
biaxial extensional and planar extensional flows are 
strongly aligning flows. A summary of the aligning and 
orienting properties, and of the geometry of the director 
orbits of the main extensional flows, is given in table 3. 

This work is supported by a grant from the Natural 
Sciences and Engineering Research Council of Canada. 
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